THE LO HADRONIC CONTRIBUTION TO

 $(g-2)_{\mu}$

K. Maltman, PANIC05, Oct. 27/05

OUTLINE

- ullet The EM vs. au discrepancy for the $[a_{\mu}]_{had}^{LO}$
- Resolving the EM vs. τ puzzle
- Some comments on IB (if time permits)

CURRENT EXPT'L SITUATION (BNL E821)

- $a_{\mu} \equiv \frac{(g-2)_{\mu}}{2} = (11659208.0 \pm 6.0) \times 10^{-10}$ [PRL92 (2004) 161802, μ^{\pm} average]
- 0.5 ppm determination (BNL E969 proposal:→ 0.2 ppm (see previous talk))
- EM-data-based SM prediction differs from experiment by $2-3\sigma$, τ -data-based version does not

SM a_{μ} SOURCES (M. Passera, hep-ph/0411168)

Source	$\delta(a_{\mu}) \times 10^{10}$
QED	11658471.88(3)(4)
LO had VP	$\sim 700(6 \rightarrow 8)$
EW	15.4(1)(2)
HO had LBL	13.6(2.5)
HO had VP	-9.79(9)(3)

- $[a_{\mu}]_{had}^{LO}$ largest non-QED, dominant SM error source
- ullet experimental error < 1% of $[a_{\mu}]_{had}^{LO}$

The LO Hadronic Contribution

• dispersive representation for $\Pi_{EM}(s)$, $\rho_{EM}(s)=\frac{1}{\pi}Im\,\Pi_{EM}(s)$ via $R(s)=\frac{3s\,\sigma[e^+e^-\to hadrons]}{16\pi\,\alpha_{EM}^2}=12\pi^2\,\rho_{EM}(s)\Rightarrow$

$$[a_{\mu}]_{had,LO} = \frac{\alpha_{EM}^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

with K(s) known

- ullet possibility of using hadronic au decay input:
 - CVC (isospin) relates flavor ud V current $\rho_{ud;V}(s)$ and I=1 EM current $\rho_{EM}^{I=1}(s)$
 - $ho_{ud;V}(s)$ from invariant mass distribution of flavor ud V current-induced hadronic au decays $(y_{ au} = s/m_{ au}^2, R_{V;ud} \equiv rac{\Gamma[au^- o
 u_{ au} \, hadrons_{V;ud}(\gamma)]}{\Gamma[au^- o
 u_{ au} e^- ar{
 u}_e(\gamma)]})$

$$\rho_{ud;V}(s) = \frac{m_{\tau}^2 dR_{V;ud}/ds}{12\pi^2 |V_{ud}|^2 S_{EW} (1 - y_{\tau})^2 (1 + 2y_{\tau})}$$

- ALEPH, OPAL, CLEO (+ B factory) data

The EM- τ Discrepancy

- $[a_{\mu}]_{had,LO}$ to \sim 1% accuracy or better \Rightarrow need IB corrections to τ data/CVC relation
- IB for dominant $\pi\pi$ contribution studied in detail (CEN PLB513 (2001) 361; JHEP 0208 (2002) 002) (Caution: hep-ph/0509224 for some additional subtleties), kinematic IB corrections for 4π
- Resulting EM, IB-corrected τ -based $\rho^{I=1}(s)$ disagree
 - $\pi\pi$, $\pi^+\pi^-\pi^0\pi^0$ discrepancies (DEHZ EPJC31 (2003) 503)
 - $-\pi\pi$ dominant for $[a_{\mu}]_{had}^{LO}$

$|F_{\pi}(s)|$ data, Hocker, hep-ph/0410081

- ullet resulting EM and au-based $[a_{\mu}]_{had,LO}$
 - differ by $\sim 2\sigma_{exp} \simeq 2\sigma_{EM}$
 - EM-based a_{μ} differs from exp't by $2.1 \rightarrow 2.7\sigma$
 - au-based a_{μ} differs from exp't by $0.7 o 1.3\sigma$
 - KLOE, CMD-2 $[\delta a_{\mu}]_{\pi\pi}$ compatible within errors \Rightarrow (pre-2005 wisdom) work with EM data only
- Caution: point-by-point inconsistencies between CMD2, KLOE data
- TANTALYZING SIGNAL FOR POSSIBLE BEYOND-THE-SM PHYSICS, IF SENSIBLE

RESOLVING THE EM-au DISCREPANCY

• FESR background: $\Pi(s)$, spectral function $\rho(s)$, w(s) analytic \Rightarrow

$$\int_0^{s_0} w(s) \, \rho(s) \, ds = -\frac{1}{2\pi} \oint_{|s|=s_0} w(s) \, \Pi(s) \, ds$$

(LHS: data, RHS: OPE [+ $w(s_0) = 0$ to suppress duality violation])

• pFESR OPE features

- V correlators, $s_0 > 2$ GeV²: strongly D = 0 dominated (hence input: $\alpha_s(M_Z)$ from independent high-scale studes, 4-loop running/matching)
- good convergence of integrated D = 0 OPE series
- "unsuppressed" $D=2k+2\iff c_k\neq 0,\ w(y)=\sum_m c_m y^m$, strong numerical suppression of higher D $O(\alpha_s)$ corrections
- integrated D=2k+2 OPE $\sim 1/s_0^k$ (hence test for absence of D>6 contributions)

THE pFESR ANALYSIS [KM, hep-ph/0504201]

- FESR choices: various pinched, non-negative, monotonically decreasing w(y), $y=s/s_0$
 - * IB-corrected $\rho_{\tau}(s)$ uniformly $> \rho_{EM}^{I=1}(s)$ in region of discrepancy
 - * \Rightarrow if τ data correct, (i) EM spectral integrals too small for all s_0 (non-negativity), (ii) slope wrt. s_0 too small (monotonicity)
 - * \Rightarrow if EM data correct, (i) τ spectral integrals too high for all s_0 , (ii) slope wrt. s_0 too high

 $-\tau$ spectral input: ALEPH, CLEO, OPAL, concentrate on ALEPH

– EM spectral input:

- * large number of experiments, need for VP corrections in many old ones
- * new (2004+) data [KLOE ($\pi\pi$), CMD-2 ($\pi^0\gamma$, $\eta\gamma$, 4π), SND (4π , $\omega\pi$), BABAR (3π , 4π)] (only KLOE incorporated into most recent [$a\mu$]_{had,LO} determinations)

RESULTS

• OPE/spectral integrals for w(y) = 1 - y

 EM

• OPE/spectral integrals for $w_6(y) = 1 - \frac{6y}{5} + \frac{y^6}{5}$

EM

(one of more general "doubly-pinched" weight family, $\{w_N(y)\}$, with $6 \to N)$

- magnitude, slope of τ spectral, OPE integrals agree for wide range of pinched monotonic ≥ 0 w(y), s_0
- EM spectral integrals < OPE, EM slope < OPE slope for wide range of pinched, monotonic, ≥ 0 w(y), s_0
- EM norm'n problem: $\alpha_s(M_Z)$ to fit $s_0 \sim m_\tau^2$ EM, τ spectral integrals (c.f. high-scale ave: 0.1200 ± 0.0020)

Weight	EM or $ au$	$\alpha_s(M_Z)$
w_1	EM	$0.1138^{+0.0030}_{-0.0035}$
w_3	EM	$0.1152^{+0.0019}_{-0.0021}$
w_6	EM	$0.1150^{+0.0022}_{-0.0026}$
w_1	au	$0.1218^{+0.0027}_{-0.0032}$
w_3	au	$0.1195^{+0.0018}_{-0.0021}$
w_6	au	$0.1201^{+0.0020}_{-0.0022}$

• EM slope problem: OPE (S_{OPE}) and spectral integral (S_{exp}) slopes with respect to s_0

w(y)	S_{exp}	$\alpha_s(M_Z)$	S_{OPE}
1-y	$.00872 \pm .00026$	ind	$.00943 \pm .00008$
		fit	$.00934 \pm .00008$
w_6	$.00762 \pm .00017$	ind	$.00811 \pm .00009$
		fit	$.00805 \pm .00009$

"ind": independent high-scale $\alpha_s(M_Z)$ input

"fit": lower input $\alpha_s(M_Z)$ from fit above

CONCLUSION: pFESR results suggest τ data OK, problem with (or non-1 γ contributions to) EM data

Subsequent (experimental) supporting evidence from SND $\sigma[e^+e^- \to \pi\pi]$ data [hep-ex/0506076]

- SND compatible with IB-corrected τ data in region of previous EM- τ discrepancy [Figure]
- ullet strong disagreement between SND, KLOE above ho peak [Figure]
- SND-based $\pi\pi$ $[a_{\mu}]_{had}^{LO}$ contribution 7×10^{-10} higher than CMD-2 $[(9.1\pm6.3)\times 10^{-10}$ c.f. Hocker ICHEP04 average]; compatible within errors with τ -based determination [Davier, Hocker, Zhang hep-ph/0507078]

ALEPH, CLEO au vs. SND05 $\pi\pi$ data

SND's CMD-2/KLOE/SND05 $\pi\pi$ data comparison

CONCLUSIONS

- pFESR tests, high-scale OPE input clearly favor τ over EM data for V spectral function (supported by SND)
- \bullet \Rightarrow $\tau+$ EM-based $[a_{\mu}]_{had,LO}$ favored over determination based on EM data only
- ullet with au input, SM prediction for a_μ in good agreement with current E821 result
- uncertainties in IB correction needed for use of τ input a limiting feature of this approach, AND very unlikely to be reducible below $\sim 4\times 10^{-10}$ (already larger than proposed BNL E969 accuracy)

- can look forward to new experimental input:
 - BABAR, BELLE radiative return $\pi\pi$ cross-sections
 - Novosibirsk VEPP-2000 upgrade (improved luminosity, $E_{CM}^{max} \rightarrow 2$ GeV (previously 1.38 GeV), upgraded SND, CMD detectors, reduced systematic errors) \Rightarrow significantly reduced errors on exclusive cross-sections (especially useful c.f. current data near threshold, above 1.38 GeV) [scheduled start-up 2005, physics results beginning 2006]
 - BABAR, BELLE hadronic τ decay data with *much* higher statistics than combined LEP experiments

POSTSCRIPT: COMMENTS ON IB CORRECTIONS

- ullet to use au data for $[a_{\mu}]_{had,LO}$, need IB corrections
- additional IB uncertainties/corrections not discussed in literature:
 - ρ -ω interference (present for EM, must add for τ):
 - * extracted flavor '38' part of ρ_{EM} depends on model for IC and IB amplitudes [Table]
 - * model-dependence of integrated contribution to $[a_{\mu}]_{had,LO} \sim 3 \times$ that associated with fitted parameter uncertainties for a given model ($\sim 2 \times 10^{-10}$ c.f. standard current CEN estimate 0.8×10^{-10})

Model dependence of $10^{10} imes \left[\delta \left[a_{\mu} \right]_{had}^{LO} \right]_{mix}$

(from fits to CMD-2, SND bare $\sigma[e^+e^- \to \pi\pi]$)

Model	χ^2 /dof	$\left[\delta\left[a_{\mu}\right]_{had}^{LO}\right]_{mix}$ CMD2 [SND]
GP/CEN	80.4/42	3.5 ± 0.8
GS	35.9/38	2.0 ± 0.5 [2.2]
HLS	36.6/38	4.0 ± 0.6 [4.5]
KS	37.1/38	3.9 ± 0.6 [4.3]
GP/CEN*	40.6/39	$2.0 \pm 0.5 [1.6]$

(NOTE: no acceptable fits of any of these models to KLOE data)

— broad ρ^0 -shaped IB contribution (in principle present in EM $\rho^0 \to \pi^+\pi^-$ signal due to IB coupling of isoscalar EM current to ρ^0) not taken into account in present treatments

IB resonance contributions to $e^+e^- \rightarrow \pi^+\pi^-$

- * unlike $\rho\text{-}\omega$ interference, NOT experimentally detectable
- * data errors too large to effectively extract using flavor '38' correlator sum rule analysis
- * analogous "direct" IB coupling of π^0 to $A_\mu^8 \sim 0.5\%$ of IC coupling at hadronic scales (1-loop ChPT); if similar for vector mesons, would yield integrated contribution $\sim (2-3) \times 10^{-10}$
- current *total* estimated uncertainty on IB correction 2.6×10^{-10} hence significantly underestimated